
Abstract

USING GENERIC TOOL KITS TO

BUILD INTELLIGENT SYSTEMS*

David J. Miller

Sandia National Laboratories

Albuquerque, New Mexico

The Intelligent Systems and Robotics Center at Sandia

National Laboratories is developing technologies for the :

automation of processes associated with environmental

remediation and information-driven manufacturing. These R

technologies, which focus on automated planning and pro-

gramming and sensor-based and model-based control, are
used to build intelligent systems which are able to generate

plans of action, program the necessary devices, and use sen-
sors to react to changes in the environment. By automating

tasks through the use of programmable devices tied to com-

puter models which are augmented by sensing, requirements
for faster, safer, and cheaper systems are being satisfied.

However, because of the need for rapid cost-effective proto-

typing and multi-laboratory teaming, it is also necessary to
define a consistent approach to the construction of control-

lers for such systems. As a result, the Generic Intelligent _-

System Controller (GISC) concept has been developed. ! -

This concept promotes the philosophy of producing generic
tool kits which can be used and reused to build intelligent

control systems.

Introduction

There have been many approaches taken in developing
2.3.456789101112131415

robotic control systems. ' In exam-

ining these efforts, a common set of requirements can be

derived. This set minimally includes such elements as fast

servo-level response based on sensory inputs, trajectory

planning based on world models of the tasks to be per-
formed, and an extensible computing environment that sup-

ports asynchronous control with multi-tasking and multi-

processing. Therefore, any approach used for designing and

implementing intelligent systems should support these

requirements.

There also continues to be discussions within the user com-

munity about the need for guidelines or standards for robotic

architectures. Because the primary purposes of standards are

to save time and money when developing new systems and

to facilitate integration of multi-supplier components, any

standards adopted should reflect these goals. Also, because
software is becoming the most critical component of com-

*Thiswork performed at Sandia National Laboratories supportedby the
U.S. Department of Energy under contract DE-AC04-94AL85000.

AIAA-94-1214.CP

N94- 30565

plex intelligent systems, any potential standards should
address the issues of how to make it easier and more cost-

effective to develop software for new intelligent system

applications.

The primary solution to this problem is software reusability.

Although this may seem too simplistic, and many would

argue that more encompassing standardization should be

pursued, designing software for reuse is technically a very
difficult task. 16 Also, because most software is developed

within the context of a specific project, budgets and dead-

lines normally preclude developers from doing anything

beyond the scope of the immediate task at hand. To over-
come this dilemma, long-range thinking and planning need

to be performed in order to encourage a philosophy of pro-

ducing generic tool kits. Such tool kits, although developed
within the context of a specific application, should transcend

the application to provide reusable capabilities which reflect

the common set of requirements for intelligent systems.

Reuse makes subsequent applications easier to develop,

thereby saving time and money. As a result, relatively com-

plex systems with "standard" components can be developed

as cost-effective solutions to difficult problems. Sandia is

pursuing this philosophy in the development of the Generic

Intelligent System Controller.

In this paper, we first describe the GISC approach to devel-

oping control systems. Then we discuss four different

generic tool kits which have been developed in support of

this approach. Next we illustrate how these tool kits can be

integrated to build an intelligent robotic system, with partic-

ular emphasis on the development of a reusable generic sub-

system to control any transport device such as a manipulator
or CNC machine. Finally, we show how this system is uti-

lized in two prototype applications.

An Avoroach to Building Intelligent Systems

The GISC concept was originally developed as part of the

U.S. Department of Energy's Robotic Technology Develop-

ment Program to design and implement prototype intelligent

systems for performing hazardous operations. It is now

being used for a variety of applications, including laboratory
automation, painting of large structures, and agile machin-

ing.

GISC is communication oriented and is based on the premise

that sophisticated intelligent system performance is achieved

306

bycoordinatingacollectionofsemi-autonomoussub-
systems,eachwithcomplementarycapabilities.Eachsub-
systemhasawell-definedcommand-and-controlinterface,
andasupervisorycontrolprogramcoordinatestheoverall
activitiesofthesystemthroughthesesubsysteminterfaces.
Individualsubsystemsmayalsopossessreal-timelow-level
controlfunctionswhichcanbeperformedautonomouslyand
asynchronously.Withtherightcombinationofsupervisor
andsubsystemcapabilities,suchanapproachsupportsthe
implementationofmodel-basedcontrolandsensorintegra-
tionwithinreusablesoftwarestructures.Thisapproachalso
promotestheuseofmodularity,distributedmulti-processing
environments,andstandardcommercialinterfaces.

F.azeJ:Ir..T._&KI_
In order to build a GISC-based system, tools are needed for

developing and integrating the supervisor and subsystems

into a complete operational control system. Four such tool

kits have been developed to provide a range of capabilities

required at all levels of an intelligent system. These include:

I) the GENISAS tool kit which provides the communi-

cation facilities needed for the distributed supervisor/sub-

system paradigm; 17

2) the RIPE/RIPL tool kit which enables development

of generic subsystems by providing object-oriented inter-
faces to intelligent system devices; 18

3) the SMART tool kit which enables development of

underlying control systems that provide the performance and
flexibility for sensor-based control and teleoperation; 19

4) the Sancho tool kit which provides for easily recon-

figurabIe menu-based operator interfaces and a dynamic sim-
ulation environment. 2°

Figure 1. conceptually illustrates how a GISC-based system

is organized with respect to these tool kits.

GlSC-based System 1--- Supervi_orv Control

Sancho

Figure 1. Reusable Tool Kits for Building GISC Systems

GENISAS - One of the key elements of any distributed

intelligent system architecture is a powerful communication

mechanism. The General Interface for Supervisor and Sub-

systems (GENISAS) is a client/server-based tool kit which

provides general communication software interfaces

between a supervisory control program and semi-autono-
mous subsystems, such as those which would be defined in a

GISC-based system. There are four main components com-

prising the tool kit. The first component consists of low-level

communication and utilities libraries which are provided to

support reliable transmission of atomic messages and virtual
multi-channels for commands, data, status, and exceptions.

The next two components include supervisor (client-based)

and subsystem (server-based) command and event process-

ing libraries. Finally, there are facilities for message con-

struction, parsing, and conversion. All of these libraries

provide capabilities which allow the user to define command

sets for table-driven command processing between supervi-

sor and subsystem, data transfer requirements based on sin-

gle point of control, events for asynchronous processing, and

symbol manipulation.

The tool kit uses an object-oriented approach to define stan-
dard client and server base classes implemented in the C++

programming language. Through inheritance, application-

specific subclasses can be derived. The base classes supply

all of the supervisor-to-subsystem communication facilities.
The subclasses, which are normally defined by the user, pro-

vide the specific command sets and command implementa-

tions for control of a particular subsystem, such as for a

manipulator or sensor subsystem.

- Another tool kit, the Robot Independent

Programming Environment and Robot Independent Pro-

gramming Language (RIPE/RIPL), is the culmination of
one of the earliest efforts to apply object-oriented technolo-

gies to building robotic software architectures. RIPE models

the major components of a system as a set of C++ software
classes. It consists of two main class inheritance hierarchies,

Device and CommunicationHandler. The Device hierarchy

contains subclasses for different kinds of devices normally

found in an intelligent system. Active devices which have

the property of being able to move or transport a tool or

work piece are derived from the Transport subclass. Trans-

port devices include robots, CNC machines, conveyors,
translation tables, or autonomous vehicles. Passive devices,

which are manipulated by the active devices, are derived
from the Tool subclass, and Tool is further partitioned into

particular types of tools such as Sensor or Grabber. The
CommunicationHandler class hierarchy defines different

ways of communicating with these devices, including serial,

parallel, or network-based message passing. A clear separa-

tion is maintained between device class implementations and

communication interfaces. Figure 2. illustrates the inherit-

ance hierarchy for Device.

A generic set of object messages or "commands" are defined

307

foreachoftheabstractbaseclasses,andthesemessagescon-
stituteRIPL.Forexample,agenericsetofRIPLcallsis
definedfortheRobot class, and these commands are used for

all robots. RIPL object messages are implemented as meth-
ods of the robot subclasses defined for each robot type.

These subclass implementations serve as "translators" from

the generic language to the robot-specific control environ-

ment. Implementations are obviously different for different
vendors, but the interface is the same. Inheritance and poly-

morphism are used to associate these generic messages with

each subclass defined for a particular robot type, thereby

providing a mechanism for generically programming any
robot for which a RIPE subclass has been implemented. The

entire RIPE/RIPL tool kit is packaged as a set of class librar-
ies.

resent stiffness, and transformers represent Jacobians. Mod-

ules are connected to create a complete circuit which

represents a control system. Typical modules include trajec-

tory modules, kinematic modules, robot joint modules, sen-

sor modules for force control and compliance, and input

modules for space ball teleoperation or force reflection. Fig-
ure 3. illustrates a simple control system using three SMART

modules. To use the tool kit, an application must define

description files which indicate the number and types of
modules to be used, how they are distributed, how informa-

tion is passed between them, their period of operation, and

appropriate filter constants.

I

I I
Figure 2. RIPE Class Inheritance Hierarchy

KBI

--

B w/J wtJ

TRAJECTORY PUMA JOINTS

a B1 I Vm_A

Figure 3. SMART Joint Controller for a PUMA 560

SMART - For low-level control of actuators and sen-

sors, a third tool kit called SMART (Sequential Modular

Architecture for Robotics and Teleoperation) provides the

capabilities required for stable autonomous and teleoperated

closed loop feedback control. This tool kit can be used with

any robot that is capable of accepting external position set

points, and it can be used with any sensor that has a VME-
based interface. The tool kit consists of a collection of C lan-

guage libraries, each of which defines an interface to a dis-

tinct system "module" such as a sensor, actuator, input

device, or kinematic/dynamic element. These "modules" can

be asynchronously distributed across multiple CPUs and can

execute in parallel with individual fixed-rate servo loops

ranging from 100Hz to 1KHz.

SMART is based on 2-port network theory in which each

module has a network equivalent. For example, inductors

represent inertia, resistors represent damping, capacitors rep-

Sancho- Sancho, a workstation-based tool kit, provides

a GISC supervisory control program coupled with interface
libraries which connect this supervisor to a graphical pro-

gramming environment. This environment includes a menu-

ing system based on X-Windows. Through these menus, an

operator can command tasks and control the state of the sys-
tem. Multiple active menu palettes allow for operations to be

initiated in parallel. Communication objects from the GENI-

SAS tool kit are used internally by the supervisory control

program to connect it with an appropriate GISC subsystem

such as a manipulator subsystem. Figure 4. shows an exam-

ple of the graphical user interface for CNC machines as it

appears to the operator on a Silicon Graphics workstation.

The functions performed by the menus are reconfigurable

through ASCII file definitions, thereby allowing the supervi-

sory control program to be reused for controlling different

subsystems. A simulation interface library also provides

308

facilitiesfortheoperatorto execute a commercial simulation

package such as Deneb's IGRIP. The operator can then inter-
act with the work cell models that are loaded into this envi-

ronment in conjunction with the menuing system and
supervisor. The simulation environment is also linked

through GENISAS to the real-time control system, providing

for dynamic model updating and position tracking.

This requires the development of interfaces between the tool

kits which allow them to maintain their autonomy and, at the

same time, allow them to interact with each other according
to the GISC philosophy. Such interfaces have been devel-

oped, and complete intelligent control systems have been

implemented. These systems utilize the tool kits to perform
tasks related to problems in such diverse areas as waste

remediation and information-driven manufacturing.

Figure 4. Sancho Graphical Programming Interface

Generic Tool Kit Interfaces

Each of these tool kits, aside from the supervisory control

program, can be used completely independently of each

other. This implies that they can be used and reused to imple-
ment robotic systems based on paradigms which are differ-

ent from the GISC concept. On the other hand, by
integrating them, a very powerful environment can be cre-

ated for building intelligent system applications which are
based on GISC.

Sancho to GENISAS Interface - Beginning at the

operator interface level, the supervisory control program
provided with Sancho automatically supplies an interface to
the GENISAS tool kit because its function is to control the

subsystems required for a particular application. This inter-
face includes menu callback routines which use GENISAS

client objects and their associated messages to communicate

appropriate commands to the available subsystems. The set

of commands, as reflected by the menuing system, may be

application-specific. However, as mentioned previously, the

309

commandsetcanbeeasilychangedthroughASCIIconfigu-
rationdatafiles.Similarly,themenuingsystemcanbeinter-
activelyredesignedinordertomeetcustomerspecifications.
Bothofthesetailoringoperationscanbeperformedwith
minimalprogrammingeffort.

TheothertoolsinSanchoprovideaninterfacetoDeneb's
IGRIPsimulationpackagewhichissimplytreatedasanother
GISCsubsystem.If adifferentsimulationpackageis
selectedforanapplication,thenanewinterfacelibrarymust
beimplemented.However,theapplicationprogrammer's
interfacebetweenthesupervisorycontrolprogram,menuing
system,andthesimulationenvironmentshouldremainthe
same.Onlytheunderlyingsimulationinterfacelibrary
implementationmustreflecttherequirementsoftheparticu-
larsimulationpackageused.

GENISAS to RIPE/RIPL Interface - The next

required interface is between GENISAS and RIPE/RIPL.
This interface occurs at the subsystem level and is relatively

straightforward since both tool kits are object-oriented and

implemented as C++ class libraries. A GISC subsystem is

normally controlled by a server process which is defined as a
subclass of the GENISAS StdServerProcess base class. It

therefore inherits all of the communication facilities required

by any server. This subclass also defines the methods which

implement the command set associated with the subsystem it
services. These methods, in turn, are implemented by using

RIPL methods defined for the device or devices controlled

by the subsystem. The integrated use of RIPE with GENI-
SAS allows for distribution of RIPE objects across multiple

CPUs and environments, and provides an ASCII-based

script file interface which translates into C++-based RIPL
methods.

RIPE/RIPL to SMART Interface - The interface

between RIPE/RIPL and SMART is somewhat complex due

to the asynchronous, distributed nature of the underlying
SMART modules. This interface has two primary compo-

nents, one associated with the se _ryer subclass and one asso-

ciated with the RIPL methods used by the server. Normally

when a subsystem is booted which uses SMART, the desired
SMART modules are automatically downloaded as part of a

startup script, and numerous tasks associated with them are

spawned. The number, type, and distribution of modules are

determined by configuration files which are currently com-

piled with the subsystem initialization code. If multiple
CPUs are utilized by SMART, an exact copy of the server
code is downloaded to each CPU. These servers are started

after SMART module initialization is completed. They also

use configuration files to build a "roadmap" which indicates
where the SMART modules are located. Through data-

driven logic, the server on the first CPU behaves as a "traffic

cop" by directing commands received from the supervisor to
either itself or to the other servers according to where the

SMART modules are located and according to which mod-

ules are required to carry out each command. Note that the

server code does not have to be modified for different

SMART configurations. Only the ASCII configuration files

need to be changed. This essentially comprises the first inter-
face to SMART.

The second interface is simpler. The RIPL methods used by

the server to carry out commands call routines from the

SMART tool kit. These routines, in turn, cause the asynchro-

nous control tasks to change state and thereby affect the state

of the devices being controlled by the subsystem. However,

a problem with this approach is that RIPL methods now

appear to be directly tied to the SMART tool kit rather than

remaining autonomous. This can be prevented by defining a
SMARTRobot class in RIPE which isolates the RIPL meth-

ods that must be implemented in terms of the SMART tool
kit. Then subclasses can be derived from SMARTRobot for

particular robot types. These subclasses can inherit either a
standard robot interface or the SMART robot interface.

Therefore, only the SMARTRobot class is dependent upon
the SMART tool kit.

Generic Subsystem for Transport Devices

Using the interface templates just described, a generic server

subsystem has been implemented which can be reused with

minor modifications to control any transport device that has

a RIPL translator. A generic command set has been defined

for this transport subsystem, thereby eliminating the need to

reconfigure the Sancho interface whenever a different

manipulator is required for a new intelligent system applica-

tion. Brief descriptions of the generic commands are given in

Figure 5.

During a graphical programming session using Sancho,

these commands are sent to the generic server subsystem by
a GENISAS client which is contained within the supervisory

control program. They are sent as ASCII strings with vari-

able numbers of arguments and argument formats. GENI-

SAS internally handles the parsing of the commands and

their arguments to determine which method in the server

subsystem should be invoked to carry out the command.

The generic transport subsystem is defined as a RobotServer
subclass of the GENISAS StdServerProcess base class. It

therefore inherits all of the communication facilities required

by any server. The RobotServer subclass itself contains the

methods which implement the generic command set. These

methods, in turn, are implemented by using RIPL methods

defined for the appropriate RIPE device driver subclass. This

is accomplished by defining a generic pointer (ptr_robot) to
the RIPE subclass inside RobotServer and establishing a

containment relationship between them. Whenever a Robot-

Server object is created during subsystem initialization, the

RobotServer constructor will create the appropriate RIPE

object or objects for the transport device in use. This, in turn,

provides the initialization for the device so that it is ready to

be controlled through the generic commands.

310

Lock:
Release:
Activate:
Deactivate:
Configure:
SetUnits:

SetSpeed:
SetAcceleration:
SetToolLength:
ReportState:
MoveTo:
MovebyJoint:
MoveReact:

MoveComply:
ManualControl:
LoadPath:
MoveAIongPath:
ClearPath:
StopMotion:
GetTool:
PutTool:

OpenGripper:
CloseGripper:
InitRecordFile:
CloseRecordFile:

give supervisor exclusive REMOTE control
give subsystem exclusive LOCAL control
place transport device in an active state
place transport device in an inactive state
configure subsystem for subsequent cmds
set the linear and/or angular units
set the absolute speed
set the absolute acceleration
set the tool length for the current tool
return the current device state
perform a motion in world space
perform a motion in joint space
move until a sensor threshhold is exceeded
move while complying to a surface
move under control of a teleoperated device
download a path segment to a motion queue
perform a path move using current queue
clear path motion queue
stop current motion gracefully
get specified tool
put specified tool
enact motion for current tool (open jaws)
enact motion for current tool (close jaws)

record a log of subsequent trajectories
stop recording trajectories

Figure 5. Generic Transport Subsystem Commands

The RobotServer generic command implementations are

identical for any transport device because all RIPE transport

device subclasses use the same RIPL calls to program their

associated hardware. An example of a simple template for

the RobotServer method which implements the Activate

command is shown in Figure 6. In this code, the server first

determines which CPU the command should be executed on

if the control system is distributed across multiple CPUs. If

this particular copy of the server resides on CPU 0, which is

by convention the CPU that the supervisor communicates

with, then message routing must be handled correctly.

RobotServer on CPU 0 uses an internal GENISAS client to

ship the command to another copy of RobotServer on a dif-

ferent CPU if the command must be executed somewhere

other than CPU 0.

The command is actually executed by calling RIPL method

change_state. This method will somehow interact with the

device to place it in an active state. For a SMART-based con-

troller, this involves calling SMART library routines for acti-

vating the SMART control system. As long as each RIPE

subclass required by the server has the standard RIPL calls,

such as change_state for activating the transport device, the

same implementation can be used by any server for any

transport device. Note in Figure 6. how the change_state

method is called using the generic ptr_robot. Therefore, for

each different transport server implementation, the only code

modifications required are redefinition of this pointer for the

desired RIPE device object contained in RobotServer and

substitution of the correct RIPE constructor call used to ini-

tialize that device. In other words, for a subsystem that con-

trois a Puma robot, RobotServer will define a containment

relationship with the RIPE class PRobot, and the generic

ptr_robot will be initialized to point to a PRobot object.

Likewise, for a subsystem that controls a CNC machine,

RobotServer will define a containment relationship with

RIPE class CNCMachine, and the generic ptr_robot will be

initialized to point to a CNCMachine object. All of the

RobotServer command methods will remain unchanged from

subsystem to subsystem, producing a high degree of soft-

ware reuse.

Application-specific information is maintained in ASCII

configuration files which are accessed by the RobotServer

constructor. Such information includes network configura-

tion information, tool and sensor tables, and SMART config-

uration information if the SMART tool kit is being used for

low-level control. The SMART configuration includes which

SMART modules are required, which CPUs they are resident

on, and which modules are accessed for each generic com-

mand implementation.

int RobotServer::Activate(int argc, void ** argv, char *e_msg) [
int ret = OK ;
static char fname|] = "Activate";
int location ;
char cntICmdMsgCopy[100] ;

entedng(fname);

IIDetermine where the command should be executed
location = WhichCPU(fname) ;

//If this is the main server and the command is to be executed
//somewhere else, send the command to the appropriate cpu.
I/If the transmission is successful, also execute the command
//on the main server to update state variables

if ((location > my_epu_number) && (my_cpu_number == 0))
{

sprinff(cntlCmdMsgCopy,"%s", fname) ;
ret = clientP[location]->SendCommand(cntICmdMsgCopy, e_msg) ;

if (ret == OK)
ret = ptr_robot->change_stat_(ACTIVATE);

]

IIIf this is the correct cpu, execute the command
else if (location == my_cpu_number)

ret = ptr_robot->change_state(ACTIVATE) ;

//This server is not suppposed to execute the command
else

ret = ERROR ;

return(ret);

Figure 6. Sample Code for a Generic Command Method

Currently this generic server is used to control several differ-

ent manipulators and a CNC milling machine. Extension of

the generic tool kits to support other devices is a straightfor-

ward, methodical process because existing detailed designs

can be reused. For example, to support a new manipulator, a

311

RIPE subclass must be implemented which provides the
translation from RIPL commands to corresponding hardware

signals that protJuce motion. Because the RIPL interface
design is already well-defined, the process basically involves

implementing each of the methods associated with the RIPL
command interface. Then a new version of the generic trans-

port subsystem can be cloned which utilizes this new RIPE

object to control the new manipulator. A similar scenario can
be followed for extending the SMART tool kit. Development

effort may still be significant since different devices have
different interfaces with varying degrees of complexity.

However, the amount of reuse and resultant savings in time

and cost are also significant.

aaalir.afipm

Complete intelligent control systems have been implemented
which utilize all four tool kits and their interfaces to perform

several prototype applications for environmental remedia-
tion and information-driven manufacturing. The resulting

systems are based on the interactive menuing interface and
simulation environment from the Sancho tool kit for auto-

mated planning and programming. The supervisory control

programs use the set of generic commands described previ-
ously to control a transport device required by a given sub-

system. This command set is easily extended or modified

through Sancho ASCII configuration files and new Robot-
Server methods to reflect changing requirements. The

generic transport server subsystem defined by subclass
RobotServer is used to control either a manipulator or CNC

machine. This subsystem connects to the supervisor through

GENISAS and executes the generic commands for any

manipulator or CNC machine that is supported by the RIPE/
RIPL and/or SMART tool kits. Currently this includes a

Schilling Titan2 manipulator, a Schilling ESM long reach

manipulator, various models of the Puma robot, and a Fadal
vertical machining center. By starting out with this base sys-

tem, task-level programming can be accomplished by gener-

ating scripts containing sequences of generic commands that

perform useful operations.

Underground Stora_,e Tank Remediation

One application for environmental remediation involves the

clean up of waste sites in which human exposure to radiation
or other hazardous elements is unacceptable. Traditional

manual master-slave methods for performing such remote

operations have very low productivity and consequently a

very high cost. Therefore, systems which use automated

planning and programming and sensor-based and model-
based control to perform these operations are faster, safer,

and cheaper.

One of the tasks which has been implemented using this sys-

tem is the cutting and removal of structures such as pipes

from underground storage tanks. A Schilling Titan2 manipu-

lator is used to perform the task. The operator first com-

mands the manipulator to pick up a hydraulic cutter end

effector and approach a pipe under graphical control, based
on a model of the tank environment. The operator uses a

mouse to select any point along the pipe where he wishes to

perform the cut. Using knowledge of the location and orien-

tation of the pipe in the graphical model as well as knowl-

edge of approved pipe shearing practices, the control system
automatically computes the correct motions to position the

cutter approximately one foot from the pipe surface. This

approach can be simulated first and previewed by the opera-
tor to verify that it can be executed safely. Once the manipu-

lator is near the pipe, the operator can then command the

system to perform a docking operation using ultrasonic sen-
sors to center the pipe within the jaws of the cutter. Once

docked, the operator commands the cutter to shear off the

pipe, followed by an undocking operation.

All of the manipulator motions are executed through the

generic robot server using the generic command set. Addi-
tional subsystems are used in GISC-like fashion to control
the sensors and the cutter. The docking operation is therefore

actually a "macro" command which consists of a sequence

of generic commands to perform compliant motion. This
macro is an example of how application-specific software

can be developed within the context of the generic control

system to perform specific tasks.

Intelligent CNC Architecture for A_tile Machinin4,

Another application in the area of information-driven manu-

facturing involves the development of an intelligent CNC
machine control system architecture which enables one to

more fully automate the process from CAD design to fin-

ished part. The software implementation once again consists

of the graphical programming environment coupled with the

generic transport subsystem which controls a Fadal Inc. ver-
tical machining center through a RIPL translator. The Fadal
machine encoders are interfaced to the subsystem for real-

time position tracking. In addition, a touch probe and struc-

tured lighting system are also interfaced to the subsystem for

part and fixture location.

A typical scenario for using the system would begin with the

operator opening a window onto his favorite CAD system
and designing a part containing features which require

machining. When the design is completed, CAD models for
the finished part, raw stock, and fixtures are imported into a
simulation environment such as Deneb's IGRIP. A kinemati-

cally correct model of the milling machine is available
within this environment, and the operator performs the nec-

essary setup of the virtual machine by interactively arranging
the CAD models of the parts and fixtures in an optimal way

for machining operations. The operator then interactively

generates a tool path by using a space ball to maneuver the
machine tool around the part. The system automatically

records the motions which can be played back in a simula-

tion mode to verify that there are no collisions and that an

acceptable material removal sequence is being performed.

When the operator has completed the generation of the pro-

312

gram,hecanthenmounttheactualpartsandfixturesonto
theselectedmachinebedanduseasensorsuchasthetouch
probetolocatethepartsandfixtureswithrespecttothe
machinecoordinatesystem.Thisinformationcanbe
uploadedtothegraphicalprogrammingenvironmentwhich
usesit toperformitsowncalibrationprocesstoaccurately
registerthemodelwiththerealphysicalworld.Thenthetool
pathsderivedfromtheprevioussimulationareautomatically
adjustedbasedonthiscalibration.Finally,thegraphically
generatedprogramisdownloadedtothegenerictransport
subsystemandexecutedasasequenceofgenericcommands
tomachinethepart.

_llmmalw

In summary, rapid, cost-effective deployment of intelligent

systems to perform useful operations requires a software

infrastructure which allows a system builder to immediately

focus on the application-specific requirements of the task.

Such an infrastructure is best provided through a set of com-

plementary, integrated generic tool kits which serve as the

building blocks for new application development. Such tool

kits should provide the necessary communication, device,

and operator interfaces within reusable software structures.

As standalone products, they are independent of any particu-

lar application, but in the hands of the system integrator, they
can be used to build very powerful intelligent systems for a

variety of automated tasks.

As generic tool kits proliferate and are made more robust and
easier to utilize, then de facto standards may evolve for intel-

ligent systems which are based on common interfaces estab-

lished within these tool kits. Obviously, there are many
barriers to overcome in terms of defining these interfaces and

learning how to develop truly reusable code. Technology

transfer and commercialization of these packages is also
essential in order to establish a market-driven standardiza-

tion climate. Companies such as Adept, Schilling, PAR Sys-

tems, and Trellis are already developing and marketing more

open, modular approaches to control systems due to repeated

requests from the robotics R&D community. With continued
efforts within this community to define the necessary inter-

faces and then transfer them to the commercial sector, we

may gradually see an evolution toward the availability of
standard tool kits which can be used to construct whatever

kind of intelligent robotic system is needed for future appli-
cations.

References

1. Griesmeyer, J. M., McDonald, M. J., Harrigan, R. W.,

Butler, P. L., and Rigdon, B., "Generic Intelligent System
Controller (GISC)," Sandia Internal Report, SAND92-2159,
Sandia National Laboratories-New Mexico, October, 1992.

2. Albus, J. S., McCain, H. G., Lumia, R., "NASA/NBS
Standard Reference Model for Telerobot Control System

Architecture (NASREM)," NIST Technical Note 1235, April

1989.

3. Backes, P., Hayati, S., Hayward, V., and Tso, K., "The

KALI Multi-arm Robot Programming and Control Environ-

ment," Proc. of NASA Conf. on Space Telerobotics, January

31-February 2, 1989.

4. Brooks, Rodney A., "Elephants Don't Play Chess,"

Robotics and Autonomous Systems, No. 6, pp. 3-15, 1990.

5. Dilts, D. M., Boyd, N. P., Whorms, H. H., "The Evolution

of Control Architectures for Automated Manufacturing Sys-

tems," Journal of Manufacturing Systems, Vol. 10, No. I, pp.

79-93, 1991.

6. Elfving, A., Kirchhoff, U., "Design Methodology for

Space Automation and Robotics Systems," ESA Journal,
Vol. 15, 1991.

7. Hayati, S., Venkataraman, S. T., "Design and Implementa-
tion of a Robot Control System with Traded and Shared

Control Capability," Proceedings 1989 IEEE International

Conference on Robotics and Automation, Vol. 3, pp. 1310-
15, Scottsdale, AZ, May 14-19, 1989.

8. Hayes-Roth, E, Erman, L. D., Terry, A., Hayes-Roth, B.,

''Domain-Specific Software Architectures: Distributed Intel-

ligent Control and Communication," IEEE Symposium on

Computer-Aided Control System Design, pp. 117-128, Napa,
CA, March 1992.

9. Hormann, A., "A Petri Net Based Control Architecture for

a Multi-Robot System," Proceedings. IEEE International

Symposium on Intelligent Control 1989, pp. 493-8, Albany,

NY, Sept. 25-26, 1989.

10. Martin Marietta, ''Draft Volume I of Next Generation

Workstation/Machine Controller (NGC) Specification for an

Open System Architecture Standard (SOSAS)," Document
No. NGC-OOO I-13-OOO-SYS, March 1992.

11. Mitchell, T.M., "Becoming Increasingly Reactive,"

AAAI-90 Proceedings: Eighth National Conference on Artifi-

cial Intelligence, Vol. 2, pp. 1051-8, Boston, MA, July 29-

Aug. 3, 1990.

12. Rossol, Lothar, "Nomad Open Architecture Motion Con-

trol Software," Proceedings of the International Robots &
Vision Automation Conference, Detroit, Michigan, April 5-8,

1993.

13. Saridis, G. N., "Architectures for Intelligent Controls,"

Symposium on Implicit and Nonlinear Systems, Ft. Worth,
TX, December 14-15, 1992.

14. Sorensen, Steve, "Overview of a Modular, Industry Stan-

313

dardsBased,OpenArchitectureMachineController,"Pro-

ceedings of the International Robots & Vision Automation

Conference, Detroit, Michigan, April 5-8, 1993.

15. Stewart, D. B., Volpe, R. A., Khosla, E K., "Integration

of Real-Time Software Modules for Reconfigurable Sensor-

Based Control Systems," Proceedings 1992 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems,

Raleigh, NC, July 7-10, 1992.

16. Freeman, E, "Tutorial: Software Reusability," IEEE

Computer Society Press, ISBN 0-8186-0750-5, 1989.

17. Griesmeyer, J. M., "General Interface for Supervisor and

Subsystems (GENISAS)," Sandia Internal Report, Sandia

National Laboratories-New Mexico, October, 1992..

18. Miller, D. J. and Lennox, R. C., "An Object-Oriented

Environment for Robot System Architectures," IEEE Con-

trol Systems, Vol. 11, No. 2, February 1991.

19. Anderson, R. J., "SMART: A Modular Architecture for

Robotics and Teleoperation," International Symposium on

Robotics and Manufacturing (ISRAM '93), Santa Fe, NM,

April, 1993.

20. McDonald, M. J. and Palmquist, R. D., "Graphical Pro-

gramming: On-Line Robot Simulation for Telerobotic Con-

trol," Proceedings of the International Robots & Vision

Automation Conference, Detroit, Michigan, April 5-8, 1993.

314

